The Cerebellar Saga: Why do Dogs with CA Wobble?

Natasha Olby, Vet MB, PhD, DACVIM (Neurology) Department of Clinical Sciences, NCSU College of Veterinary Medicine Center for Comparative Medicine & Translational Research

The Problem

Neurodegenerative disease that produces progressive gait abnormality

First known case reported in the UK in 1979

* Larger cluster of cases appeared in the US in the 1990s

Cerebellar degeneration in Old English Sheepdogs

H. Steven Steinberg, VMD, DACVIM; Thomas Van Winkle, VMD, DACVP; Jerold S. Bell, DVM; Alexander de Lahunta, DVM, PhD, DACVIM

Gait abnormality

* Onset of signs between 6 months and 3.5 years

Truncal Sway

Intention Tremor

Difficulty with Stairs

Mode of Inheritance

* Autosomal recessive

- Need 2 copies of the abnormal gene to show signs
- Dogs with one copy are silent carriers that can pass the mutation on to their offspring but never show signs

Diagnostic Test Findings: MRI

Thames et al., 2010

CSF analysis - spinal tap

- Will allow the clinician to diagnose encephalitis
- Performed under general anesthesia
- Normal no evidence of inflammation

Histopathology: normal CBM Molecular layer

Purkinje layer

Granular layer

Histopathology: Affected Dog

The Cerebellum

* Controls the rate, range and force of movement

* Vital for smooth, coordinated movement

Neurodegenerative Diseases of the Cerebellum: Humans

- * Hereditary Ataxias or Spinocerebellar Ataxias (SCA)
- * Autosomal recessive, dominant, X linked or mitochondrial
- * Onset at a wide variety of ages
- * Often also affect another region of the nervous system
- * Numerous different genetic causes known, but the cause in many people remains obscure

Neurodegenerative Diseases of the Cerebellum: Dogs

- Cerebellar Abiotrophy, Cerebellar Ataxia, Cerebellar Cortical Degeneration, Cerebellar Degeneration
- * Autosomal recessive or X linked
- * Onset at a wide variety of ages

* Genetic cause known in 2 breeds – the beagle and the Finnish Hound

The Start of the Search: 1990s

- * DNA samples were collected on a large number of Old English Sheepdogs (*Jerry Bell et al.*)
- Phenotype was recorded and method of phenotype determination was noted

- A candidate gene approach was used to try to find the mutation
- 5 genes were sequenced and none were abnormal(Gary Johnson et al)

Step 2: Linkage Analysis (2006-2008)

Process in which the *phenotype* is linked to the *genotype* specific markers positioned across all of the chromosomes

Each 'marker' has been selected because there are several different versions - alleles

Each allele will be passed from parents to offspring and can be traced down the generations

Linkage Analysis contd

It is possible to link the inheritance of phenotype (affected or normal) to the inheritance of certain genotypes....linkage analysis

OES Linkage study

* Genotyped a family of 48 dogs (Tonya Harris)
* Originally included 8 affected dogs.

* Over time added an additional 4 affected dogs

Dr. Urkasemsin

Linkage Analysis Results

Step 3: GWAS

- * Genome wide association study will allow us to look at more markers in animals that are not necessarily related
- Used new chips from Illumina that allowed us to genotype 1000's of SNP markers at once
- Performed at Dr. Andy Singleton's Neurogenetics laboratory, NIH by myself and Cary Salzmann. Funded by Dr Singleton.

* Byrlina * * Byrlina *	algenina soossaa	 algring stagging stagging 	- algrins -	 algrins toostoot 	= illumina =	" illymina "	= illyminar =	* illumina *

GWAS results

Cary Salzmann

Haplotype Analysis

 Blue – homozygous

 Yellow heterozygous

12MB Haplotype block

Natasha Olby

Step 4: sequence capture

Sequenced the entire 12MB region in 3 normal and 3 affected dogs

Cary Salzmann, Dr. Noriko Tonomura, Dr. Kerstin Lindblad-Toh's laboratory at the Broad Institute

Cary Salzmann

Data Analysis

>3000 changes found!

Exomic variants only (coding regions)

Fit autosomal recessive mode of inheritance

Non synonymous: change the protein

What now?Step 5

Sequenced 6 SNPs with Sanger sequencing

Is this mutation the cause?

- Protein function predictors predict the mutation is malignant
- * The protein is an enzyme important in autophagy
- * Genotyped ~600 OES and this mutation is the only one associated with the disease
- * Screened other breeds and the only one to have this mutation is the Gordon Setter

The Gordon Setter Story

 Have cerebellar degeneration with an almost identical phenotype

- All affected dogs were homozygous for the mutation
- * Highly unlikely that the same mutation would be present in 2 breeds of affected dog by chance!

Gordon Setters and OES?

Gordon Setters and OES?

Important Facts

* We have a genetic test but how good is it?

 We have screened dogs from all major breed groups and it is not found in any other breed

	Old English Sheepdogs	Gordon Setters		
Sensitivity	100%	100%		
Specificity	99%	100%		

* These numbers may change as we test more dogs

* 4 OES tested positive but were reportedly normal

More Important Facts

* How prevalent is the disease and the allele?

 Fortunately it is not very prevalent although numbers will change with more widespread testing

	Test population	Random population
Disease prevalence	6.25%	3.8%
Allele Prevalence	20%	14%

Can you test for it now?

- * We hope to offer the test from next week
- * Offered through NCSU Veterinary Genetics Laboratory (Dr Meurs)
- * Cost: \$51
- Link: http://www.cvm.ncsu.edu/vhc/csds/vcgl
- Can test from oral swabs or blood

* Turn around time is typically a week, results only given by mail and only to the person who sent in the sample

Ongoing Work and Plans

* Trying to prove causality

 Trying to understand how the mutation produces neuronal death

- Screening humans with hereditary ataxia for the mutation
- * Aiming to submit publication in the next month

Acknowledgements

* Dr. Jerold Bell (Tufts)

- Drs. Dennis O'Brien and Gary Johnson (Missouri CVM)
- * Dr. Andy Singleton (NIH)
- * Drs. Kerstin Lindblad Toh and Noriko Tonomura (Broad Institute)
- Drs. Dahlia Nielsen and Alison Mottsinger-Reif (NCSU Statistics)

- * Dr. Ganokon Urkasemsin
- * Cary Salzmann Agler
- * Tonya Harris
- * Pragna Mehta
- * Kim Williams
- * Dr Kate Meurs

